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Model Reduction of Semi-Positive Definite Systems Reflected to

Actuator and Sensor Locations

Yoon-Gyeoung Sung* and Young-Phil Park**
{Received January 14, 1999)

A model reduction method for large flexible structures is developed in order to deal with rigid
-body modes and to obtain higher modes related to starting vectors corresponding to multi
-directional locations of actuators and sensors. The algorithm is involved with the frequency
shifting technique, Krylov vector sequence and the inverse iteration method. The reduced-order
model by the proposed algorithm has shown better dynamic response than the model construct-
ed by truncated eigenvectors of a full-order system because the eigenvectors are not always the
best choice in a dynamic analysis. Futhermore, the algorithm for a semi-positive definite system
can accommodate a damping effect so that the efficient vectors depending on load vectors can
be produced without increasing the system order and without using complex calculus, unlike the
standard eigenproblem with damping effect. Numerical example is given with a flexible space

structure characterized by closely spaced eigenvalues.
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1. Introduction

An important issue in modeling of flexible
structures or any other large-scale systems is the
dimensionality of the system, especially those
formulated by the finite element method. The
finite element approach can lead to an accurate
model, but results in a high order system. Hence,
a model reduction approach plays an important
role for efficient dynamic analysis and real-time
controller design. In the model reduction
approach, the selection of projection basis is
important to the accuracy of the reduced-order
model. Many authors have researched an basis
selection by eigenmodes, static modes in compo-
nent mode synthesis and Krylov vectors, which
can be considered as static modes. In particular,
Krylov vectors have been used in eigenvalue
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analysis and applied to structural dynamics
model reduction problems. Several algorithms
have been developed using the Krylov vectors as
in the Wilson method (Wilson, et al.,, 1982) and
the Lanczos algorithm (Chen and Taylor, 1988;
Nour-omid and Clough, 1985).

Su and Craig (1991) presented a model reduc-
tion algorithm with the combination of Krylov
vectors and a parameter matching concept which
reduces the model order without destroying the
symmetry and physical meaning of the damped
system matrices. Furthermore, the reduced-order
model has the valuable property of parameter
matching. However, their algorithm cannot effec-
tively account for specific parameters and higher

frequency contents due to matching of low fre-

quency modes. Such loads with high frequency
contents may be, for example, produced by earth-
quakes or by common control signals and exter-
nal disturbances. Skelton and Yousuff (1983)
showed that certain higher mode shapes are
important in the application of their modal reduc-
tion method to large flexible structures.

By including the frequency dependent vectors
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in the process of vector generation, accuracy of
either dynamic analysis or control system design
is dramatically improved in references (Joo, et al.,
1989; Sandridge and Haftka, 1991). Xia and
Humar (1992), motivated by reference (Joo, et
al., 1989), presented an algorithm in order to
account for the frequency content of the loading.
For systems with a paramete that may strongly
influence the response, particularly for loading
with high frequency contents, the original Ritz
vectors algorithm is improved in the sense of
selecting more essential modes. However, those
algorithms deal with an undamped linear system
and destroy the symmetry and the physical mean-
ing of the system matrices because it is necessary
to put a second-order matrix differential equation
into a first-order form.

Furthermore, the previous vector generation
algorithms cannot be directly used for a semi-
positive definite system which has singularity in
the stiffness matrix. Craig and Bampton (1971)
presented a computational procedure for identify-
ing rigid-body and deformation coordinates by
partial factorization of the stiffness matrix and for
obtaining a suitable coordinates transformation
which permits the rigid-body coordinates to be
eliminated and a problem suitable for iteration to
be formulated. Ricle (1990) employed a spectrum
shift in order to remove rigid-body modes, while
allowing the stiffness matrix to be factorized in
developing load-dependent Ritz vectors.

By extending the frequency dependent Krylov
vectors (FDKYV) algorithm developed by Sung
(1997), the singularity in the stiffness matrix can
be automatically accommodated. The singularity
arises from rigid-body modes of system dynamics
for flexible spacecraft. In this development, the
idea of spectrum shifting of the stiffness matrix is
used with the previous FDKV algorithm devel-
oped in reference (Sung, 1997). In order to
account for the rigid-body modes, the shifting
strategy should be used consecutively for rigid-
body mode removal by taking small spectrum
shifts and for the new Krylov vector sequence
update. Starting vectors are orthogonalized with
respect to the rigid-body vectors. The rigid-body
modes are computed by the null space of the

stiffness matrix. After the generation of Krylov
vectors, a set of vectors for the flexible-body
modes is reorthogonalized, and then the entire set
of Krylov vectors is constructed. With the modift-
cation of the algorithm developed by Sung
(1997), new algorithm can account for desired
parameters with low frequency as well as high
frequency contents for a general second-order
damped system by considering the influence of
actuators and sensors.

In the following sections, the algorithm of
frequency dependent Krylov vectors (FDKYV) for
a semi-positive definite system is presented by
consecutively employing a spectrum shifting tech-
nique. A numerical simulation and comparison
are given for illustration. The efficiency and
accuracy of the FDKYV algorithm is numerically
demonstrated by the application to the SCOLE
(Spacecraft COntrol Laboratory Experiment)
model which is characterized by closely spaced
flexible modes and 6 rigid-body modes. Quasi-
Krylov equations are presented as preconceived
vectors to reduce the computational burden for
on-line dynamic analysis of the SCOLE system.
Finally, a conclusion is made with respect to
multi-dimensional systems.

2. Model Reduction for a Semi-
Positive Definite System

An algorithm for model reduction is developed
by strategically utilizing the spectrum shifting
technique to remove the rigid-body modes and to
produce vectors associated with the flexible body.
The projection subspace does not destroy the
symmetry and the physical meaning of the system
matrices by utilizing a second-order formulation.
The concept of component mode synthesis is
employed for the semi-positive definite damped
system. The vectors produced by the new algorith-
m are used as admissible vectors to approximate
the system deflection. It is shown that the new
admissible vectors have better accuracy than
eigenvectors alone, as shown in the case of
impulse response, because it is not always the best
choice to select the eigenvectors as an admissible
set. By taking the block form as starting vectors,
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which consists of several vectors, the algorithm
can produce a set of vectors with each iteration.
Therefore, it is suited for a multidimensional
system such as large flexible structures. The ana-
lytical development is presented and summarized.

The vector second-order systern with rigid-
body modes is expressed as

Mi () + C% () + Kx(t) =Fu (M
y=Px+ V% (2)

where x&R" is the displacement vector; xR’
the input vector; y&R™ the output measurement
vector; M, C, and K are the mass, damping, and
stiffness matrices; P and V are the displacement
and velocity sensor distribution matrices, respec-
tively. The damping matrix is assumed to be
symmetric. The displacement response vector x
(¢) can be written as

x(t)=Qz(?) (3)

where @={(q1, gz -**» gp) is a set of projection
vectors and z(¢)=(z;, =z, -+, 2p)7 is a set of
reduced coordinates with p< x.

In the conventional mode-superposition
method (Bathe, 1982; Meirovitch, 1980), the
selection of the projection vectors can be deter-
mined by either exact eigenvectors or a set of
independent vectors through certain iterative pro-
cedures. However, the usage of exact eigenvectors
for a damped system involves a complex vector
basis so that the computation procedure is more
complicated due to doubled order and complex
calculus. Here, an iterative procedure is sought
without increasing the system order and using
complex computation.

The rigid-body modes can be obtained from

Q=N (K) 4
where » and 4 stand for rigid-body and null
space, respectively. As the previous development
(Xia and Humar, 1992), a Krylov sequence with
damping effect is represented by
o D& 'q)l ()
where g is any non-zero vector (which is com-
monly a static correction vector), and

De=(K—oM)™'M (6)

where ¢ represents the shift. In order to obtain an

Sdamped:[Qy Dsq, thrq, .

iterative formulation, the following equation,
x{t) =Qe" " (7
where 4 is the eigenvalue and @ the eigenvector,
is substituted into each state variable of x(¢) in
Eq. (1). As a basic relation of vector iteration

method, the eigenvalue problem can be formulat-
ed as

- TS el
[_Kﬁ(?—dM zﬁz]{u—%) Q} ®

where the shifted matrices on both sides remain
symmetric. From the above eigenproblem, an
iteration formula by the inverse iteration tech-
nique is represented as

[~K—GC—02M 0]{0;’“}

0 M Q}'ﬂ
R - A

After algebra operations, the iterative proce-
dure for damped system can be expressed as

Qa=[-K—-oC—-a*M]"
{{C+20M]Q5+ MQ}, (10)
= Q- (1D
A procedure for the FDKYV algorithm is
presented in Table 1. Unlike the previous proce-
dure in reference (Sung, 1997), the formula is
used to generate an entire vector sequence with
a more generalized procedure. Note that the
new procedure becomes the Su and Craig proce-
dure (Su and Craig, 1991) by taking zero shift for
o. The entire set of the new Krylov vectors is
formed as follows:

x () =[Qr Qlz(t) (12)

where @, and @, are uX 7 rigid-body matrix
and X s (blocks) flexible-body matrix, respec-
tively. Hence, the order of the final transforma-
tion matrix Q is p= 17 + s (blocks) where s will be
chosen by a designer.

By developing the frequency dependent Krylov
vectors for semi-positive definite systems, a desir-
ed parameter can be dynamically located. More-
over, due to block generation of vectors, the
procedure can be applied to a system with closely
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Table 1 FDKYV algorithm for semi-positive definite system.

Operation

Calculation

rigid-body modes

Starting vector :
independent vector selection
frequency shift

singular value decomposition

first vectors

remove Q, from ¢,

frequency dependent
Krylov vectors with
different shifts(g=g¢, or g,):

orthogonalization

singular value decomposition
(j+1)th vectors

Form the s-block projection
matrix :
Final Matrix

P=[F, PT, VT, M\ V7]
K,=K—oM
Ré=K;'P

v=_M VT
UsSo Ui =svd{(R5) "K,R¢}
Qf=RsUaSs"
Qf = R§ UnS4"

Qi=Qr— Z’ QAQIMQY)
Q= Z Q{QTKQf)

For j=2, 3, .-+, s—1, lterate

W=[—K—oC—o*M]

Ri=W[C+2eM1Q¢+ MQY)
=qf

Ks=K—oM

R¢=Ri— 2QH((Q1) KRS)

RY=RI~ 3Q4((@) "KoRY)

U;S;Uf=svd{(R)) TKsRs}
Qj+l RdU Sx{z
Qla=RIUS}?

End

Qf=[le’ Qldv Qg’ by Qg_,]

Qz[Qr’ Qf]

spaced eigenvalues such as large flexible space
structures. Furthermore, the proposed scheme can
while the Ritz
1982) procedure can
handle only single loading cases. Since the start-
ing vectors can account for the influence of
actuators and sensors, the new algorithm could be
well suited for control applications. In addition,
the size of the block can be reduced if the
actuator/sensor allocation is collocated, since P
is the linearly independent part of [F, P7, V7,

treat complex loading cases,
vectors (Wilson, et al,

MVl

In Table 1, a small value for 4,(>0) can be

chosen to remove the singularity of the stiffness
matrix and to make the first load dependent
vectors converge quidcly. g, rad/sec can be
selected to dynamically locate the load dependent
vectors according to actuator location and excita-
tion input. If the actuator location is related to
certain mode shapes in a cluster, g, can be taken
as a value in the middie of the cluster. On the
other hand, if there are several predominant fre-
quencies that are widley separated, the generation
of frequency dependent Krylov vectors may be
repeated with one or more additional shifts.
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3. Quasi-Krylov Equations of Motion

The equations of motion for the SCOLE model
are adopted from Meirovitch and Quinn (1987).
The SCOLE mode! consists of the mast support-
ing the antenna which is a steel tube 10 feet (3.048
m) long. The antenna consists of 12 aluminum
tubes, each 2 feet (0.6096 m) long, welded
together to form a hexagonal-shaped grid. The
shuttle is simulated by a steel plate of uniform
thickness with a mass of 13.85 shugs (202.1241
Kgn). Those equations are used for the evalua-
tion of the model reduction algorithm. The space-
craft consists of a shuttle carrying an antenna
connected to the shuttle by means of a mast, as
shown in Fig. I. 3

The equations of motion of a flexible spacecraft
counsist of six nonlinear ordinary differential equa-
tions for the rigid-body motion of a reference
frame attached to the spacecraft in undeformed
state, coupled with a set of partial differential
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equations for the vibration of the elastic members
relative to the rigid frame. By utilizing a perturba-
tion approach for a solution, the equations are
separated into a set of equations for the rigid-
body motions (representing zero-order effects),
and a set of equations for the small elastic
motions and deviations from the rigid-body
motions (representing first-order effects). The
model is discretized by finite element method with
hermite cubic polynomial as interpolation func-
tions for bending and linear functions for axial
and torsional deformations.

The order of the perturbation equations is too
large for a control implementation, and therefore
some reduction is necessary. To this end, the
elastic motion can be expanded into a series
consisting of premaneuver vectors acting as
admissible vectors. These premaneuver vectors
correspond to a state of equilibrium prior to the
maneuver, which may be characterized by either
rest or steady rotation. Hence, a set of the Krylov
vectors are generated in order to account for the

v
Line of Sight

< Tip

4—— Mid

Hub

Fig. 1 Earth-orbiting spacecraft.
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elastic modes which are excited by external
inputs. By using these Krylov vectors which
account for damping effects in the system, a more
efficient model reduction is possible than by using
eigenvectors. The task of numerical simulation
can be carried out conveniently by means of the
new model reduction algorithm.

The proposed FDKYV algorithm is applied to
the perturbated equations of motion of the
SCOLE system in either rest or steady rotation.
The premaneuver Krylov vectors correspond to a
state of equilibrium prior to the maneuver, which
may be characterized by either rest or steady
rotation.

The perturbated equations of motion of the
SCOLE system can be rewritten as

Mx () +G() % () + (Ko+ K. () x(8)

=F*u(t) (13)
where K, consists of the time-varying terms of the
stiffness matrix and K, contains the constant
stiffness terms. The proposed algorithm can be
used for the perturbed equations of motion since
the coefficients of the gyroscopic and stiffness
matrices exist. The premaneuver equations of
motion at rest can be expressed as

Mi(t)+Cx (1) +Kox () =F*u(t) (14)
where a Rayleigh damping term (Joo, et al,
1989) C=aM + K is added in Eq. (14). Note
that the elements of the damping term in rigid-
body states are assigned zeros. The displacement
vector of the premaneuver problem can be ap-
proximated by a linear combination of the iter-
atively generated Krylov vectors as foliows:

x(8)=Qz(t) (15)
where z(f)ER"! is in Krylov space. Inserting
Eq. (15) into Eq. (14) and premultiplying by ©7,
we obtain

Mz () +Cz (1) +Koz(t) =Q"F*u(t) (16)

where

M=Q™MQ
C=Q7CQ )
K=Q"K:Q

The premaneuver Krylov vectors have not
decoupled the equations of motion. However,

they take advantage of the efficient and accurate
dynamic response of a small order system. We
refer to Eq. (16) as being in guasi-Krylov form.

4. Numerical Evaluation

For the numerical simulation, the SCOLE
model (Meirovitch and Quinn, 1987) is employed
to illustrate the model reduction algorithm for
semi-definite systems. A reduced-order model
with the first 30 normal modes is used as a basis
model due to the limitation of the time integrator
for ordinary differential equation of MATLAB
instead of using the full-order SCOLE model
with 48 degrees of freedom. The damping matrix
is assigned to the full-order model by using the
Rayleigh damping for numerical simplicity and
illustration. The damping formula is written as C
=aM + BK where g=p3=0.005 were selected,
but we know that the damping factor of space
structures is very small. The portion of rigid-
body coupling of the C matrix was nullified.

In Case 1, an actuator is located at the hub to
the y-direction and a sensor is placed at the
mast-tip to the y-direction. In the process of
every FDKYV iteration, two vectors will be gener-
ated due to the noncollocation of an actuator and
a sensor. The model, denoted by FDKV (r2ft), is
generated by consecutively using the spectrum
shifting with g,=5 rad/sec for the first 4 elastic
vectors and with g,=10rad/sec for the last 2
elastic vectors. The model, denoted by (rif2), is
generated by consecutively using the same spec-
trum shifting parameters for the first 2 elastic
vectors with ¢, and for the last 4 elastic vectors
with g,. In Table 2, the damped eigenvalues are
listed for comparison.

In the dynamic analysis for Case 1, the mast-
hub is excited with non-zero initial velocity y,;,
=1 ft/sec(0.3048 m/sec) for impulse response. In
Fig. 2, the impulse responses of tip deflection of
the four models are shown with respect to the
undeformed structure. In the error plots in Figs.
3 and 4 with respect to the 30 basis model by
taking the absolute values of impulse responses, it
is clear that the impulse responses of the Krylov
dependent vector sets, FDKV (r2fl) and FDKYV
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Table 2 Comparison of complex eigenvalues.

12 FDKV 12 FDKV
No. 12 Normal Vectors
Case 1 :r2f1 Case 1 :rlf2

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

b) 0 0 0

6 0 0 0

7 —9.3574e—2  6.0076¢+0i —9.3574e—2  6.0076e+0i —93574e—2 6.0076e+0i
8 —1.0684e—1 6.4209¢+01 —1.0684e—1 6.4209¢+0i —1.0684e—1 6.4209¢+0i
9 —8.0869¢e—~1 1.7939¢+0i —8.0858e—1 1.7938e+1i —8.0874e—1 1.7940e+ li
10 —1.6798e+0 2.5847e+1i —1.6574e+0 2.5675e+1i —1.2798e+0 2.2565¢+1i
11 —5.0280e+0 4.4552e+1i —5.3296e+0 4.5854e+1i —6.1148¢+0 4.0966e+ li
12 —1.376le+1 7.2896e-+1i —1.7039¢+1 8.0773e+1i —1.7283e+1 8.1324e+1i

Basis set = 30, Normal set =12, FDKV set = 12
x10™ Basis vectors x10™ Normal vectors

Detlection {m)
e
o wn

&

|
-

e
»

Dellection {m)
)

B

-1

0 1 3 4

2
Time (sec)
Fig. 2 Case 1: Impulse response of mast-tip

y-axis, dot: z-axis).

(r1f2), are much more accurate than those of the
12 normal-mode set in both directions. It means
that a small number of lower eigenmodes cannot
represent the entire dynamic response, sufficient-
ly. The impulse responses in axial direction, z
axis, are quickly damped out for all the sets with

Dellection (m)
o
=) [

8

]
-

o
n

Deflection {m)
o

8

-1
Time (sec)

of damped SCOLE model (solid: x-axis, dashed:

very small differences. The impulse response of
FDKYV (r2fl) is more accurate than the one of
FDKYV (r1f2) and it implies that vectors related
to lower frequencies are greatly participated in
the dynamic response.

In Case 2, an actuator is located at the mid-
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x10™
3.5 T T T T T T
1 AR Normal (12)
b i o l--- FDKV (r2H1)|
: Ll ——  FDKV (rif2)"
2.5 . FEA o9
2 -

Error (m)

model.

_1.5 il 1 1 1 1 1 L
[} 05 1 1.5 25 3 35
Time (sec)
Fig. 3 Case I: Deflection difference in x axis of mast-tip with respect to damped basis
x10™
3.5 T T T T T T T
R Normal (12)
] . | ==--  FDKV (r2f1)] ]
B B ——  FDKV (rif2)["
25 — = ]
2+

Error (m)

Fig. 4 Case 1: Deflection difference in y axis at mast-tip with respect to damped basis

25 3 35 4

Time (sec)

model.
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x10*

8 T T T T T Y T
~~~~~~~~ Normal (12)

o --—  FDKV (r2ft)| ]
——  FDKV (r1f2)

4H 4

-6 4

-8 1 i ! ) t 1 :

0 0.5 1 1.5 2 25 3 3.5 4

Time (sec)

Fig. 5 Case 1: Deflection difference in z axis at mast-tip with respect to damped basis model.

Basls set = 30, Normal set = 12, FDKV set = 12

x10” Basls vectors x10” Norma veclors
1

e

n
©
n

Deflaction (m)
o
Deflection (m)
©

-05 05
- -1
0 1 2 3 4 0 1 2 3 4
x10™ FOKV (r2f1) x10° FOKV (r112)
1
0.5 0.5
E E
3
% 0 § 0
© °
o [=]
-0.5 Y
-1 -1
0 1 2 3 4 0 1 2 3 4

Time (sec) Time (sec)

Fig. 6 Case 2: Impulse response at mast-tip of damped SCOLE model (solid: x-axis, dashed:
y~axis, dot: z-axis).
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Table 3 Comparison of complex eigenvalues.

No 12 Normal Vectors [2 FDKV 12 FDKV
Case 1 :12f1 Case 1:1lf2
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 —9.3574e—2 6.0076e+01 —9.3574e—2 6.0133e+0i —1.0672e—1 6.4170e+0i
8 —1.0684e—1 6.4209e+ 0i —1.0684e—1 6.4209e+0i —7.6933e—1 1.7496e+1i
9 —8.086%—1 1.793%¢+1i —8.1057e—1 1.7960e+1i —1.2798e+0 2.2565e+1i
10 —1.6798e+0 2.5847e+ li —~1.7221e+0 2.6169¢+1i —2.4221e+0 3.1014e+1i
11 —5.0280e+0 4.4552e+1i ~1.0791e+0 6.4798e+ i —1.3660e+1 7.2638¢+1i
12 —~1.376le+1 7.2896e+ 1i —4.7995¢+1 1.2997e+2i —6.9972¢+1 1.5196e+2i
4)( 107 i . . . - . ‘
-------- Normal (12)
- --  FDKV (r2f)
- ——  FDKV (r1f2)| 1

Error (m)

-3 1 1 1

;:’ \ R .', .'.

2 25 3 3.5 4

Time (sec)

Fig. 7 Case 2: Deflection difference in x axis at mast-tip with respect to damped basis model.

point of the mast to the y-direction and a sensor
is placed at the mast-tip to the y-direction. g,=
Srad/sec and g,=30rad/sec are chosen for the
accurate vector generation.

In the dynamic analysis for Case 2, the middle
of the mast is excited with non-zero initial veloc-

ity  Yme=11ft/sec(0.3048 m/sec) for impulse
response. The impulse responses of the tip deflec-
tion of the four models are shown with respect to
the undeformed structure in Fig. 6. In Figs. 7 and
8, the 2 FDKYV sets show good agreement with the
set of 30 normal-mode model. The FDKV (r2fl1)
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x10™
1.5 :.‘ T T T T T T T
2 [T Normal (12)
Do S -~-  "FDKV (ra2ft)
R S : ——  FDKV {r1f2)] |

Error (m})

-1.5 . 1 L L i 1 L 1
o Q0.5 1 1.5 2 25 3 35 4
Time (sec)

Fig. 8 Case 2: Deflection difference in y axis at mast-tip with respect to damped basis model.

x 10
8 ' l . . T T 1}
( ........ Normal (12)
6 'ﬂ - FDKV (r2f1) 4
! ——  FDKV (r1f2)

E
g
u
-6} E
-8f 4
-10 [ -
-12 1 I i 1 " L 1
0.5 1 1.5 2 2.5 3 35 4
Time {sec)

Fig. 9 Case 2: Deflection difference in z axis at mast-tip with respect to damped basis model.



Model Reduction of Semi-Positive Definite Systems Reflected to Actuator and Sensor Locations 725

shows better accuracy than the 12 normal-mode
model in y-tip deflection. After 2.seconds, the
FDKV (rif2) shows better results than other
models in both x and y directions. In Fig. 9, the
deflection in z axis is almost negligible.

The FDKYV algorithm for semi-positive defi-
nite systems is developed with the application to
the SCOLE model. Based on the numerical analy-
sis, the sets of FDKV vectors produced more
accurate dynamic responses than the set of 12
normal modes did in two excitation cases with
respect to the set of 30 normal modes. Therefore,
we can say that low frequency modes are not
adequate to represent the system response and
therefore load dependent frequency modes must
be strategically included to improve the dynamic
response analysis. Note that eigenvectors are not
always the best choice in dynamic analysis at least
for the applications shown in the numerical anal-
ysis. By employing the FDKYV algorithm, more
accurate dynamic response can be obtained with a
smaller number of vectors.

5. Conclusions

The algorithm of frequency dependent Krylov
vectors (FDKYV) was developed for semi-positive
definite systems. In the nature of the FDKYV
procedure, an efficient vector set can be generated
without increasing the system order and without
using complex calculus, unlike the standard eigen-
problem with damping effect. The superiority of
systems transformed by the FDKYV algorithm over
those transformed by eigenvectors was demon-
strated with the application to the quasi-Krylov
equations of the SCOLE model. In the paper, pair
of one-directional actuator and sensor was con-
figured to generate the FDKYV set for starting
vector generation. For general cases, muli-direc-
tional locations of actuators and sensors could be
chosen for realistic application of the FDKV
algorithm. On the other hand, the FDKV pro-
duces further reduced-order model in the case of
the collocation of each pair of actuator and sensor
due to the dependency in starting vector selection.

As further researches, parametric studies are
required to determine guidelines for selecting

necessary number of vectors, optimum selection
of g, and 7, with regard to input loading and
configuration of actuators and sensors. In addi-
tion, a warning mechanism is necessary because
the shifted matrix will be nearly singular and
numerical instability may arise.
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